

2024 SPRING CONVENTION

Evaluation of ECE, FRP, and Sealers for Corrosion Mitigation in Reinforced Concrete Bridges

Bridge Substructure Repair: Harvesting 1998 Research for Success

Paul Pilarski, Bridge Construction Engineer *Mark Chauvin*, Principal and Unit Manager

What's in it for me?

- Learn about 3 techniques researched in 1998 to give better service life extension to existing reinforced concrete substructure
- 2. Review initial research findings as compared to long term results
- 3. Understand the #1 thing to make above ground reinforced concrete last

Study Bridge

I-394 over Dunwoody (MN Bridge No. 27831)

- Concrete Deck
 - Joints every 3rd pier
- Prestressed girders \bullet
- **Reinforced concrete piers** \bullet
 - black bar

History:

- Built 1967
- New deck joints → 1977, 1987, 2004 •

Why this bridge?

- High number of piers
- History of pier corrosion lacksquare
- Very accessible

APRIL 21-24, 2024 ICRI.ORG

Dr. Shield, University of Minnesota Mark Chauvin, U of MN grad student

- U of MN | MnDOT partnership
- Evaluate "new" corrosion mitigation techniques on substructures
 - Electrochemical chloride extraction (ECE)
 - Fiber reinforced polymer (FRP) wraps
 - Sealers

ECE:

- Remove chloride ions (cause corrosion) from concrete
- Uses water and electricity
- Typ. Duration \rightarrow 3 to 6 weeks
- Can restore to near original condition

• \$\$\$

Fiber Wrap (FRP):

- Confines concrete against cracking
- Limits water ingress
- Can partially replace any lost/corroded steel
- Concern: Does corrosion continue under wrap?
- \$\$

Ş

Sealers (silanes):

- Sealant absorbed into concrete
- Limits water ingress
- Short-lived effectiveness?
- Concern: Is moisture trapped in concrete?

Carbon FRP GFRP Sealer Control Not included

Shotcrete repairs (1997)

• No anodes

ECE (1998)

- Pier 34WB
- Pier 37WB

- Chloride testing
 - Before and after ECE
- Half-cell potential testing
 - Before and after ECE
- Resistivity
 - After ECE

Pier 34WB West Face [ECE]

Post 1998 Study

Typical service conditions and...

- Continued half-cell/resistivity testing (1998-2005)
 - Data collected approx. quarterly
- New deck joints (2004)
- Fire! (2007)

WB Pier 34, West Face, North End (2018)

>2017-18 repair planning

Inspection contract for bridge substructure repair needs in 2019 project

>2018 Study Initiates

- 1998 study intended to identify best practice for long-term durability
 - Value and Effectiveness
- Unique research opportunity
- Harness evidence to close loop on 1998 study
 - Real traffic and environment (not lab)
 - Real project needs for data

>2018 Study

Mirror 1998 study

- Delamination mapping/repair areas (Collins Engineers)
- Visual inspection
- FRP openings
- Half-cell testing
- Chloride testing adjacent to 1998 pre/post ECE locations

20 Year Review - Comparison of Chloride Content at Depth of Reinforcing Steel (1.5 - 2.5") vs. Corrosion Threshold (0.035% by weight of concrete)

Sample Location	1	Pier Cap						Column A		Column B		Column C	
Sample ID	37N-W1	37N-W3	37N-W4	37N-E1	37N-E2	37N-E3	37A-1	37A-2	37B-1	37B-2	37C-1	37C-3	
1998 - Pre-ECE	0.021	0.006	0.018	0.040	0.041	0.011	0.002	0.005	0.002	0.035	0.004	0.001	
1998 - Post-ECE	0.006	0.008	0.007	0.016	0.014	0.008	0.004	0.007	0.004	0.015	0.009	0.001	
Surface Treatment	MBrace	Silane	Fosroc	Silane	Fosroc	MBrace	MBrace	MBrace	Silane	Silane	Fosroc	Fosroc	
2018	0.128	0.039	0.094	0.108	0.113	0.022	0.009	0.008	0.008	0.008	0.129	0.018	

20 Year Review - Comparison of Concrete Surface Distress

Element	Locations Corrosion Mitigation Strategy				gation Strategy	Concrete Surface Distress						
	Pier	Column	ECE	FRP	Surface	1998 [Pre-H	ECE]	2018				
	Cap	np Treatmen Type		Treatment Type	Approximate Quantity (sf)	Distress Ratio (%)	Approximate Quantity (sf)	Distress Ratio (%)				
Pier	North End	Α	Yes	Yes	CFRP	35	11	0	0			
37WB	Middle	В	Yes	No	Sealer	20	5	30	7			
	South End	С	Yes	No	Sealer	45	15	50	16			

			Acid-Soluble Chloride Concentration Results								
				(% by mass of concrete)							
					1998 Study			2018 Study			
Pier	Treatment	Sample	Depth	Pre-	Post-	Change		Chloride	Change		
		ID	(in.)	ECE	ECE	(%)	Sample ID	Level	(%)		
			0 - 0.5	0.080	0.017	-78.8		0.096	464.7		
	ECE +		0.5 - 1	0.044	0.031	-29.5		0.123	296.8		
	Sealer	37N-E1	1 - 1.5	0.044	0.027	-38.6	1737N-E1	0.148	448.1		
	Jealer		1.5 - 2.5	0.040	0.016	-60.0		0.108	575.0		
			2.5 - 3.5	0.032	0.003	-90.6		0.039	1200.0		
	ECE + Sealer	37N-E2	0 - 0.5	0.018	0.026	44.4	1737N-E2	0.138	430.8		
			0.5 - 1	0.028	0.028	0.0		0.152	442.9		
			1 - 1.5	0.025	0.007	-72.0		0.150	2042.9		
			1.5 - 2.5	0.041	0.014	-65.9		0.113	707.1		
37WB			2.5 - 3.5	0.029	0.017	-41.4		0.058	241.2		
			0 - 0.5	0.032	0.016	-50.0	1737N-E3	0.051	218.8		
	ECE +		0.5 - 1	0.017	0.018	5.9		0.073	305.6		
	CFRP	37N-E3	1 - 1.5	0.013	0.018	38.5		0.037	105.6		
			1.5 - 2.5	0.011	0.008	-27.3		0.022	175.0		
		'	2.5 - 3.5	0.008	0.003	-62.5		0.019	533.3		
			0 - 0.5	0.016	0.010	-37.5		N/A	N/A		
	565 .		0.5 - 1	0.041	0.017	-58.5		N/A	N/A		
	ECE +	37N-E4	1 - 1.5	0.041	0.011	-73.2	N/A	N/A	N/A		
	Sealer		1.5 - 2.5	0.044	0.003	-93.2		N/A	N/A		
			2.5 - 3.5	0.037	0.002	-94.6		N/A	N/A		

ECE Reduction

20 Year Change

Chlorides over threshold at depth of steel (2 inches):

- 86% of all core locations in pier caps
- 68% of all core locations
- 54% of all core locations in ECE treated piers
 - Was 0% in 1998 post-ECE

Chloride increases <u>NOT</u> influenced by type of surface protection

Why CL- so high?

- FRP coverage incomplete
- Cores vs. powder
 - PPM vs. % by mass
- Samples only to 3-1/2" depth
- Location adjustments
- **Significantly** more exposure
 - Salt usage WAY up since 1998

ECE + FRP

- No recurrent distress
- HCP typically passive

ECE + Sealer

Recurrent distress ~ controls

FRP Only

 Recurrent distress in area of water exposure/joint leakage

	Corrosion N	Mitigation	Strategy		Risk Factors for Future Corrosion					
D	escription	Installation Locations			2018 Study Data					
ECE	Surface Treatment Type	Pier	Pier Section Column of Pier Cap		Risk of Corrosion as identified by Half-Cell Potential Testing ²		Chloride Level over threshold at Depth of Reinforcement?			
					Pier Cap	Column	Pier Cap	Column		
		34WB	North End	Α	Low	Low	Yes	Yes		
Y	FRP Wrap	34WB	Middle	В	Low	Low	Yes	Yes		
		37WB	North End	А	Moderate	Low	Yes	No		
		34WB	South End	С	Moderate	Low	Yes	Near ³		
Y	Sealer	37WB	Middle	В	Moderate	Low	Yes	No		
		37WB	South End	С	High	High	Yes	Yes		
Υ	None									
		34EB	Middle	E	Low	Low	Yes	Yes		
Ν	FRP Wrap	34EB	South End	F	Moderate	Moderate	Yes	Yes		
		40WB	North End	А	High	High	Yes	Yes		
Ν	Sealer		•							
		34EB	North End	D	Low	Low	Yes	Yes		
Ν	None	37EB	North End	D	N/A	N/A	No	Yes		
		40WB	South End	С	Moderate	Low	Yes	No		

APRIL 21-24, 2024 ICRI.ORG

Cost vs benefit

1998 treatment and cost

De	escription	Installation Cost ¹ (Approximate square feet treated)						
ECE	Surface Treatment Type	Surface Surfa Treatment ECE Treatm		Mobilization/ Demobilization				
Y	FRP Wrap	\$33,805 (1025)	\$51,625 (900)	\$5,160				
Y	Sealer	\$33,805 (1025)	N/A	\$5,160				
N	FRP Wrap	0	\$51,625 (900)	\$5,160				
Ν	None	0	0	\$0				

Cost vs benefit

	1998	treatme	ent and cost		Co	ncrete Repairs - 201		NCRETE REPAIR	
De	escription	(Apr	Installation Cos proximate square fee	t ¹ et treated)	Approximate	Shotcrete	Approximate	Total Cost ^{4,5}	tore Kepurpose Kenew
ECE	Surface Treatment Type	ECE	Surface Treatment	Mobilization/ Demobilization	Quantity ² (SF)	Repair ³ (\$/SF)	Total Cost⁴	(1998 + 2019)	
Y	FRP Wrap	\$33,805 (1025)	\$51,625 (900)	\$5,160	0		0	\$91,000	
Y	Sealer	\$33,805 (1025)	N/A	\$5,160	130	¢16E	\$22,000	\$61,000	
N	FRP Wrap	0	\$51,625 (900)	\$5,160	35	\$105	\$6,000	\$63,000	
Ν	None	0	0	\$0	95		\$16,000	\$16,000	APRIL 21-24, 2024

- 1. ECE+ FRP \rightarrow good performance | high cost + long construction time
- 2. ECE + Sealer \rightarrow poor performance
- 3. FRP in presence of leaking joints \rightarrow high recurrence
- 4. FRP without leaking joints \rightarrow performed well
- 5. Concrete repair without other treatment was cost effective *(if structural damage can be tolerated)*

Fixing leaking joints most important to success

>Additional Outcomes

CONCRETE REP Restore | Repurpose | F

- ECE treatment significantly and immediately reduced chloride contamination present at the pier caps and columns. These conditions were not sustained over the 20-year life.
- 7. Significant chloride contamination occurred in all five piers over 20 years between studies.
 - 1. FRP/sealers did not prevent ingress of new chlorides.
 - 2. High chlorides did not result in rebar corrosion unless water leakage accompanied.
- 8. Instrumentation did not prove to be a reliable indicator of corrosion activity.

Chloride Influence? West Face - WB Pier 37 – ECE Treated

Chloride risk and corrosion

CONCRETE REPAIR Restore | Repurpose | Renew

Chloride Influence?

West Face WB Pier 37 **ECE** Treated

2022 Chloride content around rebar = 0.066% by wt of concrete

MnDOT has used 0.035% threshold

CONCRETE REPAIR Restore | Repurpose | Renew

Chloride Influence?

West Face WB Pier 37 ECE Treated

Pier 34EB West Face

Restore | Repurpose | Renew

Chloride Influence?

West Face EB Pier 34 No ECE

Rebar corrosion marginal and not apparently increased since 1998 repair

Chloride Influence?

West Face EB Pier 34 No ECE

ICRI.ORG

Chloride content around rebar = 0.204% by wt of concrete NCHRP 558 Corrosion threshold = 0.025% to 0.033% MnDOT has used 0.035% APRIL 21-24, 2024

Chloride Influence?

West Face EB Pier 34 No ECE

- No drainage scuppers or downspouts
- Least expansion joint failures

• Deck joint failures

Chloride Influence?

West Face WB Pier 34 **ECE Treated**

#1 – Control water!

Deck joint failures

APRIL 21-24, 2024 ICRI.ORG

West Face WB Pier 40 No ECE

#1 Control water!

West Face WB Pier 40 No ECE

#1 Control water!

East Face WB Pier 40 No ECE

#1 Control water!

East Face WB Pier 40 No ECE

#1 Control water!

- Little price premium carbon vs. glass when considering install cost
- Confining concrete repair materials can improve life
- No good way to make up for steel section loss *Carbon FRP can add strength and durability*
- Focus on fixing distress and water exposure <u>first</u>

Glass or carbon FRP?

Current Owner Approach

- Minimize deck joints
- Identify CS3 joints for bridge scoping selection replace expansion joints
- Develop best drainage pipe detailing practices (research)
- Use galvanic anodes within repairs where rebar in contact with old concrete
- Consider ECE where substructure repair difficult, there is good access, and limited rebar loss (e.g. hammerhead piers)

Thank you!

 Paul Pilarski, DOT Bridge Constr. Engr.
State of Minnesota
Mark Chauvin, Principal and Unit Manager, Wiss Janey Elsner Assoc. Inc.

https://www.dot.state.mn.us/research/projects.html

Final Report 2019-45

