Assessment of Existing Structures in the Absence of Drawings

by Keith Kesner, Ph.D., P.E., S.E.

2011 ICRI Spring Convention Houston, Texas

WHITLOCK DALRYMPLE POSTON & ASSOCIATES, P.C. Consulting engineers

MANASSAS, VIRGINIA • AUSTIN, TEXAS • SOUTH NORWALK, CONNECTICUT • CHARLOTTESVILLE, VIRGINIA

Motivation

We have a need to evaluate existing structures

- Prior to rehabilitation
- Changes in occupancy
- Sustainability compared to new construction
- Drawings are commonly not available
 - Lost over time
 - Changes in ownership

Goals

- As-built drawings
 - Existing geometry
 - Structure type
- Current conditions
 - Deterioration
 - Variations from original construction
- Material properties
- Clear path forward
 - Analysis / building codes

Issues

- Structural assessment
 - Current conditions
 - Member geometry
 - Material properties
 - P = [K] ∆
 - $\Phi M_n = \Phi As fy (d-a/2) = \Phi 0.85 f' c a b (d-a/2)$
- Analysis requirements / limitations
- Building code requirements

Structural Assessment

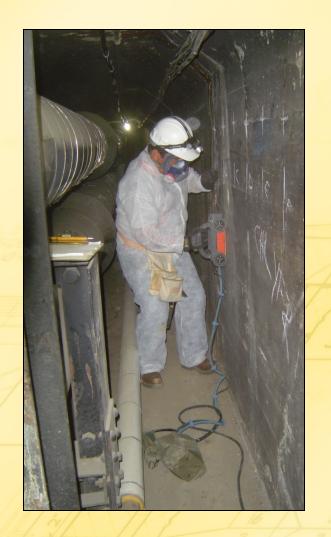
- Need to understand "in-situ" conditions
 - Actual geometry d, b, l
 - Geometry variations
 - Material strength f'_c and f_y
 - Deterioration / loss of strength

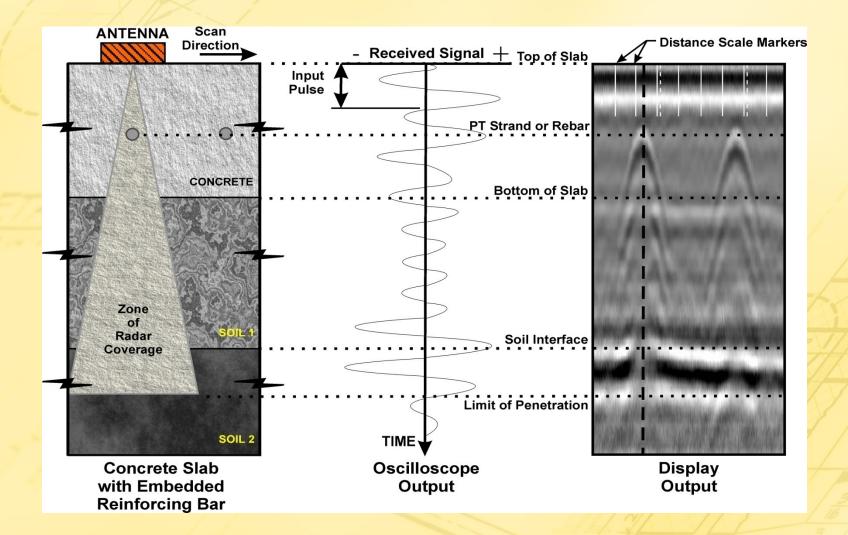
Typical Conditions to Verify

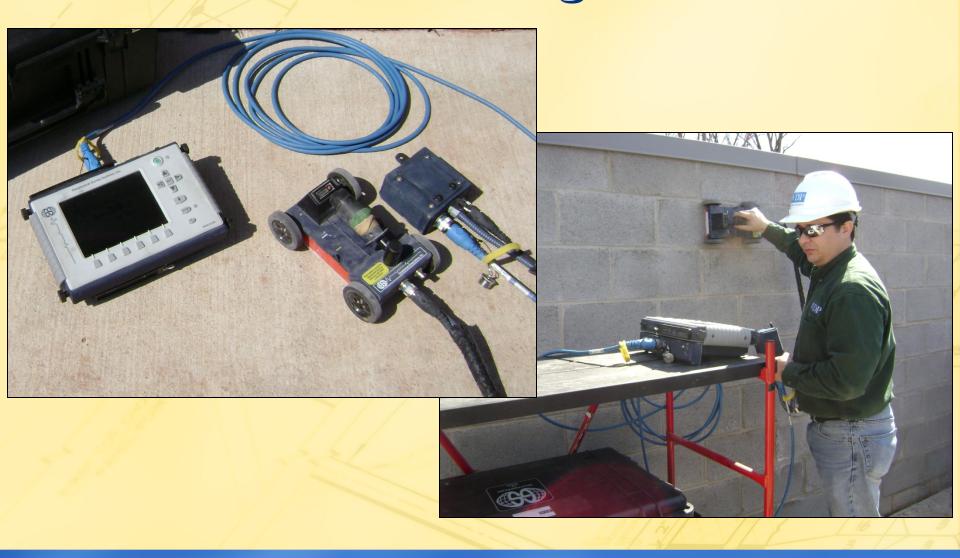
- Verification / identification of member sizes
- Location and spacing of embedded items
 - Mild reinforcing steel, post-tensioning, conduit
 - Masonry ties and hardware
- Locating hidden flaws and defects (voids, trapped moisture, poor consolidation, etc.)
- Corrosion damage assessment
- Concrete properties
- Reinforcing steel properties

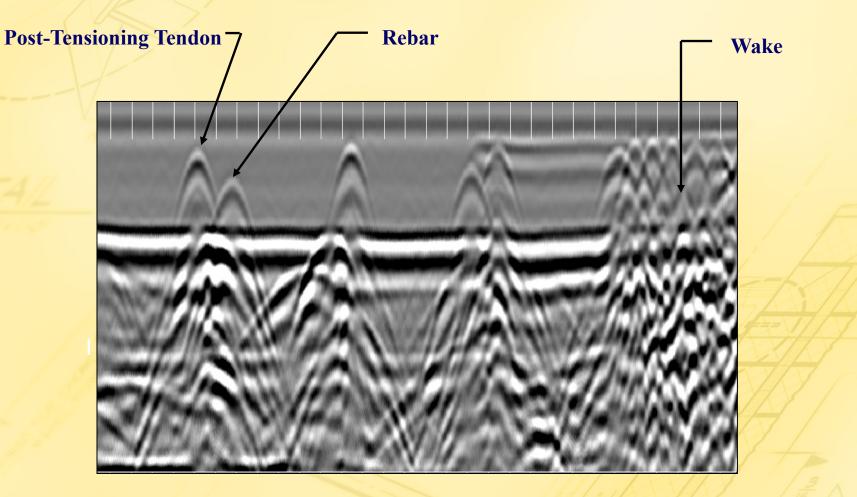
Current Geometry

- Measurement
 - Direct measurement
 - Laser scanning
- NDT Methods
 - SPR
 - Impact-echo
 - Infrared thermography
 - Acoustic emission (sounding)
 - Pachometer / eddy current device
 - Electro-chemical corrosion testing

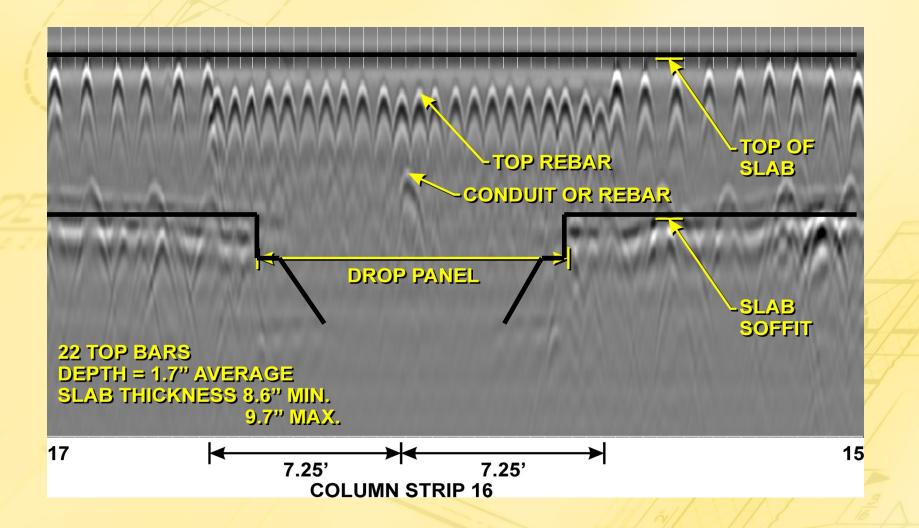

NDT Advantages

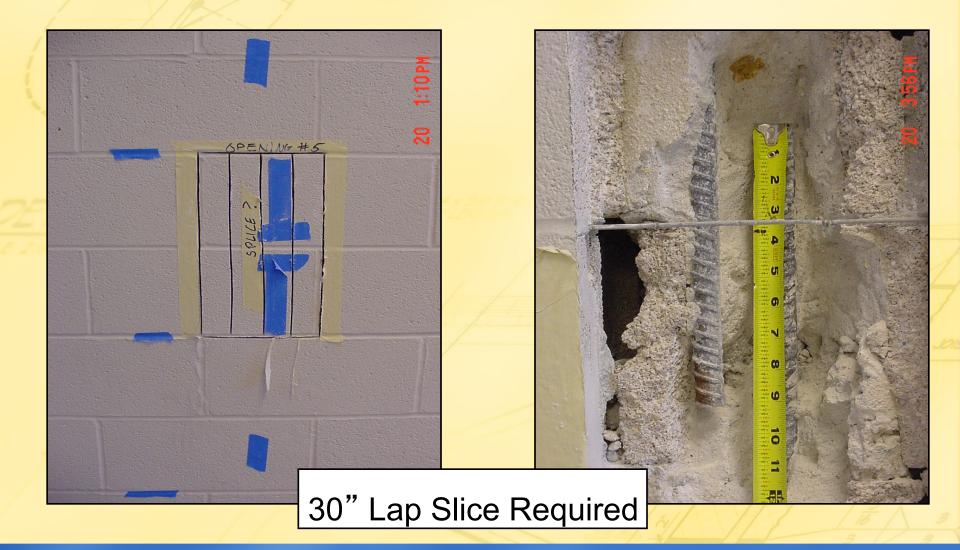

- Access to hidden items "see through walls"
- Better investigations with NDT
- Rapid accumulation of data
- Generally less expensive than destructive testing
- Minimize interruption of building services
- Evaluation and quality assurance

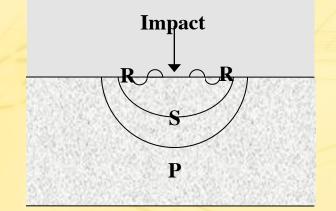

NDT Disadvantages

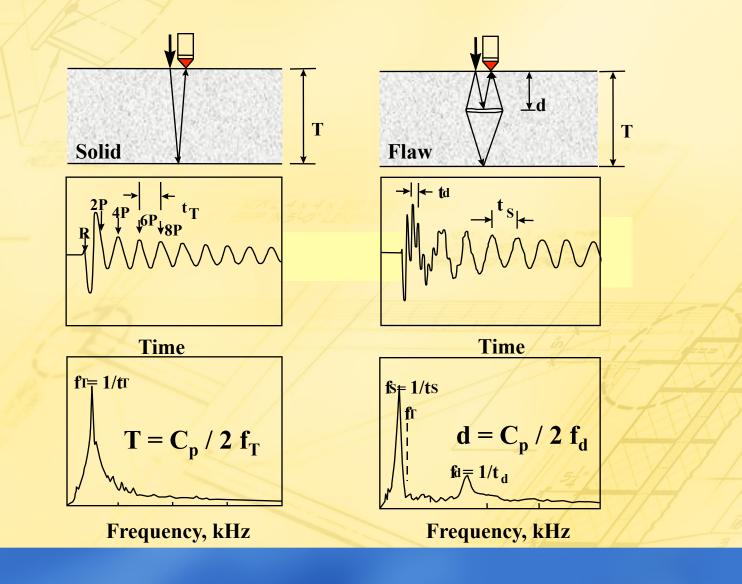

- More than one test method may be required
- Environmental conditions may effect or distort results
- Construction details & building components may effect results
- Some conditions cannot be determined with a reasonable degree of accuracy without destructive testing

- Uses electromagnetic energy to locate objects, subsurface flaws, or interfaces within a material
 - Thickness determination
 - Location/Orientation/Depth of reinforcement or conduit
 - Track post-tensioning tendon trajectories



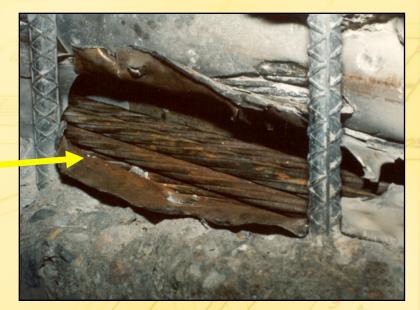



SPR – Parking Structure


Reinforcement Location

- Based upon evaluation of stress waves generated by an elastic impact on a concrete surface
- Originally developed at Cornell University and NIST by M. Sansalone and N. Carino

P – Compression waves S - Shear waves R - Rayleigh waves



- Applications
 - Thickness of members d,b
 - ASTM C1383
 - Location of internal defects
 - Voids / delaminations
 - Repair quality assurance
 - Internal damage
 - ASR / DEF / ACR

- Summary
 - Requires significant experience
 - Powerful method for flaw detection
 - Applications to quality control
 - Verification of results is critical

Issues

- Structural assessment
 - Current conditions
 - Member geometry
 - Material properties
- Analysis requirements / limitations
- Building code requirements

Material Properties

- Information Sources
 - Historical material properties
 - ASCE 41
 - CRSI References
 - Construction documents
 - Construction testing records
 - In-situ testing

Material Properties

Concrete

- Compressive strength
- Durability
 - Air content
- Reinforcing steel
 - Yield strength
 - Ductility
 - Corrosion damage

Concrete Strength

- Testing of core samples
 - ACI 214.4
 - Corrections for sample conditions
 - Number of samples
- Estimation from in-direct methods
 - Summarized in ACI 228.1R
 - Requires correlation with core test results
 - In-direct in nature

- "Equivalent specified strength"
 - f' c not fc (core strength)
 - ACI 318
 - 10% fractile strength
- Corrections
 - Length, curing, size, etc
- Number of samples
 - Representative of structure
 - Different strength in beams / columns
 - Understand acceptable level of variability

- ACI 318 vs Existing Structures
 - Section 5.6.5.4
 - Low strength concrete investigation
 - Core strength of 0.85 f' c is adequate
- Not appropriate for existing structures
 - Provision is for new structures only
 - -0.85 f' c = 0.85 f' c
 - Chapter 20 2008 code

- Number of samples
 - ASTM E 122
 - n = (2 V / e)²
 - V = estimate coefficient of population variation
 - e = maximum error allowable
 - ASTM E 178
 - Eliminate outliers
 - Skew results
 - Sufficient number to assess population
 - ASCE 41 / ACI 562

- "Equivalent specified strength"
 - Convert corrected core strength into f' c
 - Tolerance factor approach
 - Canadian Bridge Code / ACI 562

$$f_c' = 0.9 \overline{f}_c \left[1 - 1.28 \sqrt{\frac{(k_c V)^2}{n + 0.0015}} \right]$$

- n number of samples
- V variance
- k_c constant based upon number of samples

- ACI 228.1
- Test methods require correlation with cores
 - Probe / Pin penetration ASTM C 803
 - Pull out tests ASTM C 900
 - Pulse velocity ASTM C 597
 - Rebound hammer ASTM C 805
- Faster than core testing
 - More samples can be tested
 - Identify low strength areas

- "Windsor" probe ASTM C 803
 - Utilizes a powder charge to drive probes into the concrete with a known force
 - Generally accurate results

- Pullout test ASTM C 900
 - Cast in place or post-installed studs
 - Pullout force is tensile strength measure
 - Common in UK for form stripping

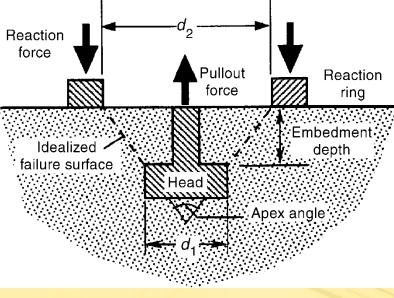



Figure adopted from ACI 228.1R-03

- Pulse velocity ASTM C 597
 - Measure travel time of an ultrasonic pulse
 - Correlates to compressive strength
 - NDT tool

- Rebound Hammer ASTM C 805
 - Utilizes an internal spring and rod to strike the concrete with a calibrated force
 - Easy to use
 - Variable results

- Correlation with core tests
 - Two sources of variability from "true strength"
 - In-place test results and core test result
 - Several methods presented in ACI 228.1R

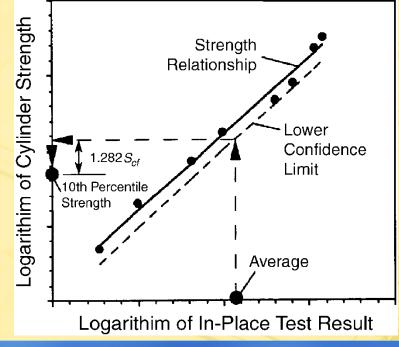
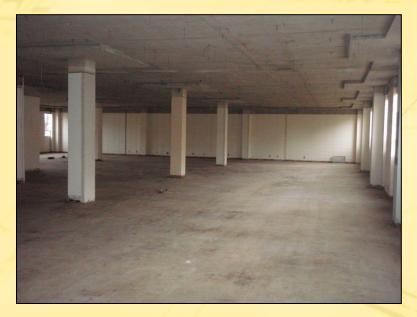


Figure adopted from ACI 228.1R-03


Reinforcing Steel

 Verify yield strength - 30 to 40 to 60 to ??ksi - Ductility NDT Methods - Not possible Grade marks Hard to find Destructive tests

Existing Structures

- Use of NDT methods
 - Expand tested area
 - Identify low strength areas
 - Verification of previous testing results

Issues

- Structural Assessment
 - Current conditions
 - Member geometry
 - Material properties
- Analysis Requirements / Limitations
- Building Code Requirements

Analysis Issues

- Capacity of Existing Structure
 - Account for in-situ conditions
 - Account for actual material properties
 - Account for construction process
- Design for "future" loads

Analysis Issues

- Construction process
 - Unbraced length changes
 - Shoring
 - Loads imposed
 - Temporary loads

Load Testing

- Valid method to assess existing structures
- Supplement analysis results
- ACI 437
 - Load magnitude
 - Duration
 - Standard in development

Building Code Issues

- Project specific assessment
- When do current code requirements have to be satisfied?
 - Grandfather clause?
 - Seismic requirements?
 - Energy codes?
- IBC Codes
 - Chapter 34 Existing Structures
 - 5% rule

ACI 562

- Concrete repair code
 - Under development
 - Expect completion in 2012
 - Parallel to ACI 318 for repair
 - Adopt into IEBC or IBC
- Code requirements not guidelines
 - Evaluation
 - Repair design
 - Quality control

Summary

Existing structures commonly encountered

- Lack of design / construction documents
- Need to preserve / protect these structures
- Assessment
 - Numerous methods exist
 - Generally project specific
- Analysis / Codes
 - More involved than new structures

Thank You

QUESTIONS?