

Full Scale Load Test for USPS Milwaukee Truck Maneuvering Area

July 21-24, 2008

Evaluations leading up to the test Planning issues and logistics Load test media options Test procedures and code requirements Instrumentation Results and conclusions

The Problem:

- Badly deteriorated waffle slab built in 1965
- Serious doubts about actual load capacity
- Little opportunity for routine maintenance (24/7 operations no shutdown time)
- Falling concrete debris a hazard to employees and cars parked below, netting was installed below.

Worst case slab deterioration

Previous repair attempts failed

Section of Waffle Slab Reinforcing

The Players:

Walker Restoration – Prime Consultant to USPS USPS operations & facilities design/construction staff (client representation) Universal Construction Testing – Instrumentation Nation Restoration Services – Contractor Assistance

Repair History

- > Numerous waffle stem repairs attempted over several years.
- > Walker designed top of slab repairs in 2002
 - Top 2" concrete replaced and new top steel in selected areas

Verification of topping and reinforcement condition

- Cores show good concrete quality and no rebar corrosion
- No significant cracking, no spalling based in visual inspection

Evaluation of slab

Updated condition survey: May, 2008

Test area: 34' x 36' bay (2-way waffle slab)

Review of existing construction documents

Analysis of slab flexural capacity

- 278 psf working LL capacity by calculation
- 240 psf required LL

Deflection model in SAFE

- 0.42 inches at full test load
- 0.39 inches max per ACI 318, Ch. 20

SAFE Model

Deflection analysis for each load stage:

Load Stage	Max. Deflection
1	0.094
2	0.187
3	0.281
4	0.375
5	0.422

Test Planning

- 1. Explore load media options
 - Water
 - Solid media (brick pallets)
- 2. Impacts on time and cost
 - Availability of media in large quantity (430,000 pounds)
 - Lead time to obtain materials
 - Time involved to place load and remove
 - Shoring and safety considerations
 - Contractor time and cost to assemble and remove

Challenges with Water as Load Medium

- Issues with formwork design, details for waterproofing and accommodation of existing floor variations.
- Obtaining large volume in a reasonable amount of time.
- River water available, but polluted and had safe handling issues.
- Unknown silt quantity could make loading inaccurate.
- Fresh water from fire hydrant, but cost and available pressure was a factor (pressure loss in fire hose) given distance to nearest hydrant and height of test.
- Time to obtain permits and dealing with various regulatory agencies: Milw. Fire dept., WI Envir., Army COE, Milw. Streets & San.
- Water disposal permits also required.
- Possible extended time on site for set up and removal was a risk for USPS operations.
- Quantities: 6930 ft³ = 52,000 gal. = 5.7 ft high over test area.

Advantages of Brick Pavers as Load Medium

- Wholesale brick supplier within 20 minutes of job site.
- Sufficient inventory was available.
- Skilled labor not required to set up (material handling with fork lifts).
- Trucking logistics and delivery were no issue.
- Pallets allowed accurate loading to within 1% of theoretical load.
- No permitting or public agency coordination required.
- Supplier agreed to "rent" material to our Contractor.
- Removal time was less than 6 hours.

With considerably less load, water becomes a viable alternative.

Select Test Location

Selection Criteria:

USPS operations restrictions such as loading docks that can be closed and keeping drive lane open at all times.

Worst case or nearly worst case condition

Test Planning Coordination with All Players

- Accommodate USPS operations
- Planning effort requires close coordination with contractor (our sub)
- Permitting agency compliance (water as loading media)
- Negotiate scope and fees with USPS and consultants
- Negotiate limitation of liability (possible slab collapse)
- Propose and negotiate schedule with client and subconsultants

Brick pallets selected as load medium

Average weight per pallet = 3,209 lbs.

Final (5th) load stage

432,400 lbs.

Max. deflection = 0.279 inches (after 24hrs)

- Goal was to provide accurate displacement measurements on a deteriorated, 2-way waffle slab throughout loading sequence.
- Displacement transducers were placed symmetrically along midspan in both directions.
- A total of nine (9) transducers were utilized. Two (2) traditional dial gages were also used.

Low Voltage Displacement Transducers Typical LVDT gauge

Gauge placement

- Displacement transducers calibrated to 0.001 inches.
- Transducers positioned below the test points and braided steel extension cables extended to the structure.
- Each transducer was confirmed as perfectly vertical prior to the initiation of the load test.

- Displacement transducers calibrated to 0.001 inches.
- Transducers positioned below the test points and braided steel extension cables extended to the structure.
- Each transducer was confirmed as perfectly vertical prior to the initiation of the load test.

- Transducers connected to data acquisition hardware and signal monitored and recorded by customized data acquisition program.
- Measurements taken at 15 seconds intervals throughout the entire loading program.
- Represented approximately 18,000 data points.

Load Testing Protocol

- Load test performed under the guidelines of ACI 318 Ch. 20.
- Instrumentation was positioned and initialized prior to the application of load to obtain datum measurements.
- Load media was incrementally applied in a balanced fashion.
- Load was maintained for a period of 24 hours.

Load Testing Protocol

- After 24 hours, load was removed and the structure allowed to rebound for an additional 24 hours.
- Used to determine if structure remained elastic throughout loading sequence.
- Recorded data analyzed to determine the elastic deformation over the loaded area.

Deflections noted at D3

Deflections noted at D1 and D5

Deflections noted at D2, D4, D7 and D8

Deflections noted at D2, D4, D7 and D8

Deflections noted at D6 and D9

Ambient Temperature At Test

Results

Day 1: Load stages 1 and 2

Day 2: Load stages 3 thru 5

Day 3: Final deflection after 24 hours and rebound.

Slab passes test!
Linear behavior
Rebound < 25% of final Δ
Final Δ < 0.39 in.
Oh... and slab did not collapse always a good thing

Findings and Conclusions

- Code prescribed load carrying capacity > anticipated dead and live loading, w/ FS
- Verification of available load carrying capacity, probabilistic approach
- Bases to extend future service life

QUESTIONS?

